Introduction to the "RAMI 4.0 Toolbox"

Author:Christoph BinderVersion:2.1Date:2023-01-27

Table of Contents

1.	Introduction				
2.	Refer	Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0)			
	2.1.	The Interoperability Layers			
	2.2.	The Industrie 4.0 Plane			
	2.3.	Life Cycle & Value Stream 6			
	2.4.	Hierarchy Levels7			
3.	RAMI	4.0 Toolbox Installation			
4.	Term	s and Definitions9			
5.	Speci	Specification of RAMI 4.0			
	5.1.	Metamodel 14			
	5.2.	Zachman Framework Integration:			
	5.3.	Row Description:			
	5.4.	Column Description:			
	5.5.	Distinction between Greenfield and Brownfield:			
	5.6.	Development Strategies			
6.	The F	The RAMI Toolbox			
7.	Mode	I-driven development with the RAMI Toolbox			
	7.1.	Develop Business Layer			
	7.2.	Develop Function Layer 40			
	7.3.	Develop Information Layer			
	7.4.	Develop Communication Layer			
	7.5.	Develop Integration Layer			
	7.6.	Develop Asset Layer			
8.	Case	Case Studies & Applications 48			
	8.1.	PIM -> PSM fully automated model transformation			
9.	Ackno	Acknowledges and Future Work53			

1. Introduction

The document at hands describes the ideas and the usage of the *RAMI 4.0-Toolbox* for developing systems and applications based on *Industrie 4.0*. The toolbox with all its functionalities itself is derived from the ideas and knowledge gained from the *Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0)*. In reference to RAMI 4.0 the intention of the toolbox is to make those ideas applicable. Therefore, the main focus of this document is how to handle the RAMI 4.0-Toolbox and its' application. If you are looking for more specific information and underlying methods or technologies like Systems-Engineering, UML-based modeling or the handling of the involved modeling tool (*Enterprise Architect* from *Sparx Systems*¹), please take a look at the corresponding literature or feel free to contact us.

¹ www.sparxsystems.com

2. Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0)

The Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0) has been developed and introduced by several industrial associations located in Germany, BITKOM, VDMA and ZVEI. The project has been launched in order to secure a future-oriented, coordinated initiative across all industrial sectors. According to this RAMI 4.0 focuses on a structured description of a distributed Industrie 4.0 system in order to identify standardization gaps. However, the proposed architecture model appears to be very useful for architecting such systems. Hence, the RAMI 4.0-Toolbox was developed in order to ease the modeling of industrial applications in reference to RAMI 4.0.

The architecture model helps to analyze Industrie 4.0 systems and interactions by mapping them to a three dimensional cube that is depicted in Figure 1 - Figure 1.

Figure 1 – Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0)

2.1. The Interoperability Layers

In order to allow a clear presentation and simple handling of the architecture model, the interoperability categories are aggregated into six abstract interoperability layers.

Business Layer: The business layer represents the business view on the information exchange related to industrial processes. RAMI 4.0 can be used to map regulatory and economic (market) structures and policies, business models, business portfolios (products & services) of market parties involved. Also business capabilities and business processes can be represented in this layer. In this way it supports business executives in decision making related to (new) business models and specific business projects (business case) as well as regulators in defining new market models.

<u>Function Layer</u>: The function layer describes functions and services including their relationships from an architectural viewpoint. The functions are represented independent from actors and physical implementations in applications, systems and components. The functions are derived by extracting the use case functionality which is independent from actors.

Information Layer: The information layer describes the information that is being used and exchanged between functions, services and components. It contains information objects and the underlying canonical data models. These information objects and canonical data models represent the common semantics for functions and services in order to allow an interoperable information exchange via communication means.

<u>Communication Layer</u>: The emphasis of the communication layer is to describe protocols and mechanisms for the interoperable exchange of information between components in the context of the underlying use case, function or service and related information objects or data models.

Integration Layer: The integration layers' main purpose is to provide all physical assets to the other layers in order to create events in the form of so called administration shells. Those shells represent the foundation for further processing and therefor provide information to do so. To show the context of each asset, the integration layer also provides the usage and integration of network components like routers, switches, terminals or passive ones like barcodes and QR-codes.

<u>Asset Layer</u>: The emphasis of the component layer is the physical distribution of all participating components in the smart grid context. This includes system actors, applications, physical components as well as documents, ideas and human beings.

2.2. The Industrie 4.0 Plane

Every layer itself is depicted by the utilization of the Industrie 4.0 Plane, which is defined as follows:

An application based on cyber physical systems distinguishes between electrical process and information management viewpoints. These viewpoints can be partitioned into the physical state the asset finds itself known as life cycle and value stream and the hierarchical zones for the management of the cyber physical system (refer to [IEC62264-1:2013, IEC 61512-1:1997]).

These two concepts together build the Industrie 4.0 plane. This allows to enable the representation on which area the interaction between single assets take place as well as the classification of those from a management point of view. According to this concept every asset has its own life cycle, depending in which state it actually is. Furthermore, to get control over information management, the asset has to be classified according to the hierarchical zones. This depends on the role it fulfills as well as the location given in the value chain.

2.3. Life Cycle & Value Stream

The Industrie 4.0 Plane covers the complete life cycle of the corresponding assets, as described in Table 1 – RAMI 4.0 Life Cycle & Value Stream.

Life Cycle	Description
Type Development	This represents the first idea of a product. At this stage the every aspect around the product is displayed, from commissioning to development, testing and the generation of the first prototypes.
Type Maintenance	Representing the result from the development stage, this shows the first model or prototype of the machine or product.
Instance Production	After specifying the requirements and generating a type, all products are developed after this template. This stage represents the development of a single part before being unique.
Instance Maintenance	The final product or machine is represented here. To meet the needs of this stage, a part has to be unique and in usage.

Table 1 – RAMI 4.0 Life Cycle & Value Stream

2.4. Hierarchy Levels

These levels reflect a hierarchical model which considers the concept of aggregation and functional separation in management of cyber physical systems. The basic idea of this hierarchical model is laid down in the Purdue Reference Model for computer-integrated manufacturing which was adopted by IEC 62264-1 standard for —enterprise-control system integration [IEC 62264-1:2013]. Furthermore, in order to cover a broader area, the model has been expanded by the standard of Batch Control [IEC 61512-1:1997].

The partitioning in levels follows the concept of functional separation. Different functions are assigned to specific zones. The reason for this assignment is typically the specific nature of functions, but also considering user philosophies. Real-time functions are typically in the field and station level and below (metering, protection, phasor-measurement, automation...). Functions which cover an area, multiple substations or plants are usually located in work centers level and above. RAMI 4.0s hierarchy levels are described in Figure 2.

3. RAMI 4.0 Toolbox Installation

The Toolbox itself comes with an MSI-Installer. All data used is copied to the folders where they are needed. Just go through the wizard and you are ready to go.

Figure 3: RAMI 4.0 Installation Wizard

4. Terms and Definitions

Business Layer	Identification of Requirements by elaborating the System Context, Stakeholders and Processes
System of Interest	The system whose life cycle is under consideration
Use Case	Description of the behavioral requirements of a system and its interaction with a user.
Business Case	Use Case focusing on economic aspects
High Level Use Case	Specific functionality to be realized in order to fulfill a certain BC
Business Actor	Legal or physical entity having individual Business Goals
Force	The cause of change in the state of motion of a particle or body (Uncontrollable Interference or Disturbance affecting the Sol)
Process	Set of interrelated or interacting activities that use inputs to deliver an intende d result
Business Process	A business process consist of a set of activities that are performed in coordination in an organizational and technical environment. These activities jointly realize a business goal. Each business process is enacted by a single organization, but it may interact with business processes performed by other organizations.
Activity (BPMN)	Activities describe the kind of work being done in a particular process instance
Task (BPMN)	The most basic level of an activity and cannot be broken down further
Kaizen Burst	Improvement Measure
Manufacturing Process	represents a single department, a process or a machine with a fixed and continuous internal material flow.
External Source	In the upper left corner of a value stream representation, the usual starting point for the material flow, this symbol stands for the supplier. It represents the customer in the upper right corner.
Databox	The data box is placed under other symbols that require data for system analysis. For example, a data box under a factory symbol could show the delivery frequency, product processing data, lot size or other information.
Transport Truck	The truck symbol stands for an external delivery to customers or from suppliers.
Transport Stapler	Used when something needs to be moved with a forklift.
Transport Symbols	These symbols are easy to understand: delivery on rails is represented by a train, air freight by an aircraft and delivery by ship by a ship symbol.

Stock	The inventory between two processes is represented by these symbols. If you need to add an inventory, you can note it under the triangle. This symbol can also show stocks.
Push	This symbol shows material that is being pushed from one process downstream to the next.
Supermarket	This symbol represents a Kanban storage location from which customers can obtain the required inventory downstream; the supplier then fills it upstream.
Goods	This symbol shows materials that come from suppliers or finished products that go from the factory to the customers.
Withdrawal	This pull symbol shows the physical withdrawal of inventory from supermarkets.
FIFO	This symbol represents a FIFO system (first-in, first-out) that limits the inventory receipt. You can write the maximum inventory capacity under the web.
Puffer	Instead of standing stocks, this symbol shows a temporary reserve stock, which should prevent problems with system failures and other things.
Manual Stream	Manual flow of information from memos, reports or conversations. If necessary, determine the type of information.
Electronic Stream	Digital information stream, e.g. B. Internet, intranet, electronic data exchange, etc.; Frequency, type of data and media used can be recorded.
Information System	Planning with an inventory control system such as material requirements planning (MRP).
Equalization	A tool that divides kanbans into lots to compensate for the differences and volume fluctuations in production.
Production Planning	Sometimes information is gathered through observation, e.g. in a production decision by a supervisor after a visual inspection of the inventory.
Employee	This symbol represents a verbal flow of information.
Rework	Percentage of rework
Discard	Percentage of discard
Function Layer	Developing Functions that fulfill the Requirements, describing their Black- and White-Box perspective and Information exchange, assign Functions to actual System Components
Activity (UML)	Description of one or more behavioral elements from the coordinated sequencing of actions that take place when a use case is instantiated
Action (UML)	The most basic level of an activity and cannot be broken down further
Function	An action, a task, or an activity performed to achieve a desired outcome through two or more different combinations of elemental behavior with defined performance encompassing multiple related disciplines.
	Input/output relationship of information (signals, data), materials, force or energy within the system of interest, or a model thereof.

Functional Element	Abstract system element that defines a relation between at least one input and at least one output by means of a function.
Functional Group	Set of strongly related use case activities.
Information Layer	Which technology (Protocol, Data Structure, Data Storage,) is used for Information exchange, e.g. JSON, XML, RDBMS, Hadoop,
Information Item	Specify particular information to be exchanged.
Data Model Standard	Cover the exchange of information, specified by the Information Items.
Information Object Flow	Relation between two components associating particular Information Items.
External Entity	An outside system that sends or receives data, communicating with the system being diagrammed.
Data Source	Files or repositories that hold information for later use, such as a database table or a membership form.
Data Flow	The route that data takes between the external entities, processes and data stores.
Communicati on Layer	Which infrastructure (Protocol, Interfaces, Communication Canal,) is used for Information exchange, e.g. LAN, NFC, OPC UA,
Port	Gate between component and environment including all hardware specifications.
Service Point	Data provider.
Request Point	Data requester.
Expose Interface	Interface either dealing as data provider or as data requester.
Interface	Providing publicly available information of an component to its environment.
Assembly	Relation between two components associating their physical interconnection.
Integration Layer	Making Components IIoT (industrial internet of things) applicable by describing HMIs, ICT infrastructures or the Administration Shell itself, e.g. API, QR Codes, Server, Switches,
Administration Shell	The AAS is used to describe an asset electronically in a standardized manner for exchanging asset-related data among industrial assets and between assets and production orchestration systems or engineering tools
Asset Layer	Technical Design of the Components

5. Specification of RAMI 4.0

This section describes the refinement of RAMI 4.0 for specifying the theoretical concepts.

Defining Models and Model Kinds for each of the RAMI Layers.

VP	Model	Model Kind	ML	Diagram
BL	Context & Constraint Model	Context Diagram	DSL	XX_System Context
		Constraint Diagram	SysML	XX_Constraints
BL	Goals Model	Business Case	DSL	XX_Business Cases
		Diagram		
			UML	XX_Scenarios
DI		Use Case Diagram		
BL	Requirements Model	Requirements	SysML	XX_Requirements
DI	Drogog Model	Diagram Ducinaca Drocaca	DDMN	VV Dusinass Drosassas
DL	Process Model	Diagram	DPIVIN	AA_Business Processes
		Diagram	DSI	XX Manufacturing
		SIPOC	DDL	Processes
		Manufacturing		
		Diagram		
FL	Function Constraint	Requirements	SysML	XX_Functional
	Model	Diagram		Requirements
			DSL	
		Function Standard		XX_Functional Standards
FI	Function	Function Diagram	DSI	XX Functional
1 L	Interconnection Model	I unotion Diagram	DDL	Architecture
FL	Functional	Activity Diagram	UML	XX_Activities
	Architecture for			
	Systems Model	Function Grouping	DSL	XX_Functional Grouping
		Diagram		
FL	Black- & White-Box	Block Definition	SysML	XX_Black-Box
	Model	Diagram		VV White Boy
		Internal Block		AA_white-box
		Diagram		
IL	Information Constraint	Requirements	SysML	XX_Information
	Model	Diagram		Requirements
			DSL	
		Information Standard		XX_Information
TT	Information F 1	Diagram	DED	Standards
	Information Exchange	Data Flow Diagram	DFD	AA_Data Flow
	WIUUEI	Information Laver	DSI	XX Information
		Diagram		Exchange

IL	Information Object Model	Information Layer	DSL	XX_Information Objects
	Widder			
CL	Communication Constraint Model	Requirements Diagram Communication Standard Diagram	SysML DSL	XX_Communication Requirements XX_Communication Standards
CL	Communication Flow Model	Communication Diagram Component Diagram	DSL DSL	XX_Communication Flow XX_Interfaces
CL	Network Infrastructure Model	Network Infrastructure Diagram Network Technology Diagram	DSL	XX_Network Infrastructure XX_Network Technologies
CL	Service Model	Service-oriented Architecture Diagram	SoaML	XX_Services
GL	Capability Model	AutomationML Diagram	DSL	XX_Capabilities
GL	Logical Model	Logical Diagram	SysML	XX_Logical Architecture
GL	Digital Twin Architecture Model	Asset Administration Shell Diagram	DSL	XX_Digital Twin
AL	Cyber-physical System Model	Block Definition Diagram Internal Block Diagram	SysML	XX_Cyber Physical System Composition
AL	Phyiscal Connection	Technology	UML	XX Technologies
	Model	Component Diagram		
				XX Hierarchy Level XX Component of
				Interest

5.1. Metamodel

5.2. Zachman Framework Integration:

RAMI 4.0 and the integration of the Zachman Framework appear to provide a suitable and comprehensive architecture framework to describe all aspects of Industry 4.0 systems. They span a Matrix that provides multiple panes, each one dealing with a specific aspect of a complex industrial system. While either IIRA or SPES are too generic and difficult to apply in such complex applications, RAMI 4.0 and the automation pyramid is specifically designed for such scenarios. With this panes, multiple stakeholders of the manufacturing system can be addressed and find their needed information in a particular area, while the interconnections in the whole system can also be described in this architecture. Additionally, by also specifying the architecture of the Smart Product, the corresponding architecture of the production system can directly be aligned and mutually developed or adapted to each other.

	Business Layer	Function Layer	Information Layer	Communica tion Layer	Integration Layer	Asset Layer
Connected World						
Enterprise						
Work Unit						
Station						
Control Device						
Device						
Product						

5.3. Row Description:

By introduction different Granularity Levels, the white box - black box perspective can be modeled. While on the upper granularity level a particular component is considered as black box, the white box perspective of the same component is modeled on the layer beyond.

Level	Core Question	Punching Station Example
Connected	What are the Business Strategy and Business	Business Entities:
World	Plans?	Business Processes +
		Components
Enterprise	What are the required activities and facilities of	Factories: Plastic
	the System to produce end products or an	Housing Factory, Plastic
	intermediate good?	Housing Warehouse
Work Unit	Which elements (stations) comprise this work	Production Lines:
	unit for manufacturing a different part of the End	
	Product? What are their relationships and	Plastic Housing
	interfaces?	Production Line
	What are the Components executing the single	Context of Punching
	non-divisible Processes for manufacturing the	Segment
	product?	
Station	What is the surrounding Environment to enable	Work Stations:
	the value adding non-divisible Production	
	Processes?	Punching Station +
		Components
Control	What is needed to control the equipment to	Machines + Controllers:
Device	ensure production of product?	
		Punching Machine +
		PLC
Device	What are the Sensors/Actors of the System?	Single Devices executing
		one specific Task:
	What are the Machines executing the	
	Functions/Work Instructions?	Measurement Sensor
		Placement Actor
		Dunchan
Dready at	What is the Anchite strug of the Due duet the	Puncher Drochusta ta manufastura
Product	Production System is manufacturing?	Products to manufacture:
	riouucuon system is manufacturing?	Plastia Housing
	Which manufacturing stans are needed to	riasuc nousing
	produce the product?	
1		

By using the approach of the Matrix, 36 different panes are provided to model the system. If another level of refinement is required, a new granularity level can be added to expand the

model of the system. For example, Biffl et al. (2017) are using 9 different granularity levels. Each of the single panes however Introduces a particular view to the system by providing models. How to model the view is done by the systems engineer, who is able to customize the pane according to his needs. Only a model template including a DSL, describing a possible way to realize the viewpoint, is provided. There are no restriction however, which models are used to describe the system. If a specific modeling element is needed for a particular part of the system, the reference architecture and its DSL can be customized as desired.

Connected World	
Enterprise	
Work Unit	Can be split up into Production Line, Production Line Segment and Work Unit, if more Granularity Levels needed
Station	
Control Device	
Device	Can be split up into Component and Construction Element, if more Granularity Levels needed
Product	Can be removed when describing the whole system, only needed when also defining the architecture of a Smart Product

5.4. Column Description:

By introducing the hierarchy levels of RAMI 4.0, different aspects of the system are modeled in different viewpoints. This is how the scope of the Systems Engineer can change from the overall system to the concern of one particular stakeholder.

Business	Function	Information	Communication	Integration	Asset Layer
Layer	Layer	Layer	Layer	Layer	
What is the	What are	What are the	What is the	How are the	What are the
Context of	the	Information	Communication	phyiscal	real world
the	Functions	Structures	Infrastructure of	elements of	Components
System?	of the	and	the System?	the systems	of the
	System?	Information		enabled to	System?
What are		Flows inside	What services	communicate	
operational	What are	the System	are provided by	with other	What is the
scenarios	the	and in the	the system?	components	Technical
that should	processes	context of		and provide	Specification
be	of the	the System?		services or	of the
supported/	system?			functions?	Components?
fulfilled by					
the system?				Which	
				elements are	
What are				additionally	
actors and				needed to	
what are				enable this	
their goals?				integration?	

5.5. Distinction between Greenfield and Brownfield:

A Greenfield is a model of a completely new system.

A Brownfield is a model of an already existing system.

This distinction has to be done, because in a Greenfield the system can be developed from scratch an no exisiting conditions need to be met. In a Brownfield, the production system is developed based on an already existing system and aims to enhance it. Both types of systems need to be considered, because both types usually occur for industrial systems.

With the modeling framework, both type of systems can be modeled. Taking the example of the architecture development standard "TOGAF", this is an iterative process. This means an AS-IS architecture is an architecture describing an industrial system as it is, while a TO-BE architecture is an architecture as we want the system to be. This means, a Brownfield can be compared with the AS-IS system architecture, while a Greenfield can be compared with the TO-BE system architecture. After defining either the AS-IS or TO-BE architecture of the system, in the next iteration always the TO-BE architecture is considered with a Brownfield system.

Thus, there are three different contexts when developing flexible production systems, where product in batch size 1, production system and production process is integratively developed.

A mapping between RAMI 4.0 and TOGAF can be found here: <u>https://www.en-trust.at/papers/Binder21aa.pdf</u>

In a Greenfield, a system can be modeled as desired by the Stakholders. Thus, the following development strategy is proposed.

	Greenfield
Step	Model the System Context with In- and Outputs of the SoI
Step 2	Model the User Interaction with the Sol, define Actors and Use Cases
Step 3	Derive Requirements from the SoI or the user interaction
Step 4	If there are any Functional Requirements, model them in this diagram and the Use Cases to Realize them
Step 5	For each Use Case of the system, model the Activity Diagram and the intended process to fulfill the Use Case
Step	Summarize similar Activity Diagram Elements to Functions, which have to be
6	executed by the system
Step 7	For each Function, model expected Input, Output, Disturbance and Interference
Step	Model the Functional Architecture and Information Exchange with Information
8	Objects between the Functions
Step 9	For each Function, choose a physical component to fulfill it
Step	Model the physical composition of the SoI with all physical components and
10	elements that represent an physical aspect of the System
Step	Model the physical representation of the System Components
11	
Step	Model all needed Systems to integrate the physical SoI as Digital Twin in order to
12	enable data exchanges or Industry 4.0-compliant communication
Step	Model the Information Exchange with the previously defined Information Objects
13	between the physical components
Step	Model the ICT infrastructure with used technologies or protocols between the
14	systems' elements

In a Brownfield, the system architecture of the current system needs to be developed first. Thus, the following development strategy is proposed.

	Brownfield
Step 1	Model the System Context with In- and Outputs of the SoI
Step 2	Model the Business and Manufacturing Processes of the System
Step 3	Model the Functional Architecture with all Functions of the current System
Step 4	For each Function, model Input, Output, Disturbance and Interference
Step	Model the Information Exchange with the previously defined Information Objects
5	between the Functions
Step 6	For each Function, connect the physical component that fulfills it
Step 7	Model the ICT infrastructure with used technologies or protocols between the systems' elements
Step	Model all used Systems to integrate the physical SoI as Digital Twin in order to
8	display data exchanges or Industry 4.0-compliant communication
Step	Model the physical composition of the SoI with all physical components and
9	elements that represent an physical aspect of the System
Step 10	Model the physical representation of the System Components

After either specifying a Greenfield or Brownfield architecture, the next iteration of architecture development is based on an already existing system. This is also done for all future iterations. Thus, the following development strategy is proposed.

	Greenfield/Brownfield + 1
~	
Step 1	Adapt the System Context with In- and Outputs of the Sol
Step 2	Model the User Interaction with the SoI, define Actors and Use Cases
Step 3	Derive Requirements from the SoI or the user interaction
Step 4	If there are any Functional Requirements, model them in this diagram and the Use Cases to Realize them
Step 5	For each Use Case of the system, look if any Business or Manufacturing Process already fulfills it
Step 6	If not, model the Activity Diagram and the intended process to fulfill the Use Case
Step 7	Summarize similar Activity Diagram Elements to Functions, which have to be executed by the system
Step 8	Look if any existing System Functions fulfill them, otherwise specify new ones
Step 9	For each new Function, model Input, Output, Disturbance and Interference
Step 10	Model the Functional Architecture and Information Exchange with Information Objects between the Functions
Step 11	For each Function, look if a physical component fullfils it
Step 12	If not, create new physical Components and connect all Functions to them
Step 13	Adapt the physical composition of the SoI with all physical components and elements that represent an physical aspect of the System
Step 14	Adapt the physical representation of the System Components
Step 15	Adapt all needed Systems to integrate the physical SoI for the new Components
Step 16	Adapt 1 the Information Exchange with the previously defined Information Objects for the new physical components
Step 17	Adapt the ICT infrastructure with used technologies or protocols between the systems' new elements

5.6. Development Strategies

This page addresses the collaboration across different teams based on the modeled system architecture. While each team is responsible for specific aspects of a component, for example requirements, functions or technical aspects, they need to exchange models with each other and build up on their respective results. Another case would be a change to the existing system model, which should be integrated into all viewpoints and levels of the model. Therefore, based on the matrix of the architecture modeling framework, different ways to exchange those models or distribute changes from a diagram to other diagrams within the model need to be available. In conclusion, when modeling a flexible production system according to the architecture, the following four directions can be addressed:

Model Driven Engineering:

From left to right, the RAMI 4.0 layers are iterated top-down, which describes the systems from requirements to technical components. Thereby, the method popular with systems engineers is applied and solutions can be created from previously outlined problem spaces.

	BUS	FUN	INF	СОМ	INT	ASS
Connected World						
Enterprise						
Work Centers						
Station						
Control Device						
Field Device						

Greenfield:

Business:

Modeling Steps: System Context \rightarrow Business Cases \rightarrow Processes \rightarrow Requirements

Business \rightarrow Function: Pass the Requirements Diagram to the Function Layer.

Function:

Modeling Steps: FAS \rightarrow Functional Architecture \rightarrow Black- & White-Box

Function \rightarrow Information: Model Transformation from Functional Architecture to Process Steps

Information:

Modeling Steps: Data Flow

Information → Communication: Pass Data Flow Diagram

Communication:

Modeling Steps: Communication Interconnection

 $Communication \rightarrow Integration: Use \ Process \ Steps, \ Data \ Flows \ and \ Interconnections \ to \ make \ an \ Architecture \ Decision \ for \ Logical \ Components$

Integration:

Modeling Steps: Logical Components

Integration \rightarrow Asset: Model Transformation to Physical Components

150% Model

Asset:

Modeling Steps: Physical Elements, Physical Connection

Brownfield:

Business:

Modeling Steps: System Context \rightarrow Business Cases \rightarrow Processes \rightarrow Requirements

Business → Function: Model Transformation from Business Cases / Processes to Functions

Function:

Modeling Steps: Functional Architecture \rightarrow Black- & White-Box

Function \rightarrow Integration: Consider Logical Elements that fulfill your Functions

Integration:

Modeling Steps: Logical Components → Logical Architecture

Integration \rightarrow Asset: Model Transformation to Physical Components

150% Model

Asset:

Modeling Steps: Physical Elements, Physical Connection

Continue with Digital Twin Development \rightarrow

Digital Twin Development:

From right to left, the RAMI 4.0 layers are iterated bottom-up, which enables the Digital Twin description of already existing physical elements. This can be applied if the system needs to be defined from already existing production lines.

	BUS	FUN	INF	СОМ	INT	ASS
Connected World						
Enterprise						
Work Centers						
Station						
Control Device						
Field Device						

Greenfield:

Asset:

Modeling Steps: Physical Elements \rightarrow Physical Connection

Asset → Integration: Model Transformation to Virtual Components

Integration:

Modeling Steps: Asset Administration Shell \rightarrow Logical Architecture \rightarrow Logical Components Integration \rightarrow Communication: Pass Logical Components to Communication Layer

Communication:

Modeling Steps: Provided Services → Communication Infrastructure

Communication \rightarrow Information: Pass Services & Infrastructure to Information Layer

Communication:

Modeling Steps: Information Exchange \rightarrow Data Model Standards

Information -> Function: Model Transformation Logical Components to Function Layer

Function:

Modeling Steps: FAS \rightarrow Functional Architecture \rightarrow Black- & White-Box Functions

Function \rightarrow Business: Pass Functions to Business Layer

Business:

Modeling Steps: Requirements

Brownfield:

Asset:

Modeling Steps: Physical Elements \rightarrow Physical Connection Asset \rightarrow Integration: Model Transformation to Virtual Components

Integration:

Modeling Steps: Logical Components Integration → Communication: Pass Logical Components to Communication Layer

Communication:

Modeling Steps: Provided Services \rightarrow Communication Infrastructure

Communication \rightarrow Information: Pass Services & Infrastructure to Information Layer

Communication:

Modeling Steps: Information Exchange \rightarrow Data Model Standards

Information -> Function: Model Transformation Logical Components to Function Layer

Function:

Modeling Steps: Functional Architecture \rightarrow Black- & White-Box Functions

Function \rightarrow Business: Pass Functions to Business Layer

Business:

Modeling Steps: Requirements

Component Refinement:

From top to down, the context is further refined from factory to workstation up to a single machine. With this method, dependencies between requirements, functions or components might be decomposed into lower granularity levels.

	BUS	FUN	INF	COM	INT	ASS
Connected World						
Enterprise						
Work Centers						
Station						
Control Device						
Field Device						+

Product/Connected World \rightarrow Enterprise:

Derive Value Creation Process from Product Development

Pass Process Steps to Enterprise

Enterprise \rightarrow Work Unit / Work Unit \rightarrow Station / Station \rightarrow Control Device / Control Device \rightarrow Device:

Business: Refinement of Requirements

Function: Refinement of Functions

Asset: Refinement of Assets

(Information: Refinement of Data Management Components)

(Communication: Refinement of Network Elements)

Pass the higher granularity element as black-box to the lower level.

Factory Integration:

From bottom to up, the existing machines can be integrated within a factory. This allows to compose similar or interconnected system elements to a higher hierarchy level.

	BUS	FUN	INF	СОМ	INT	ASS
Connected World						
Enterprise						
Work Centers						
Station						
Control Device						
Field Device						

Device \rightarrow Control Device / Control Device \rightarrow Station / Station \rightarrow Work Unit / Work Unit \rightarrow Enterprise:

Business: Summarize similar Requirements an create superior one.

Function: Summarize similar Functions an create superior one.

Asset: Summarize similar Assets an create superior one.

(Information: Summarization of Data Management Components)

(Communication: Summarization of Network Elements)

Pass the lower granularity element as white-box to the higher level.

Enterprise \rightarrow Connected World:

Pass Functions to Connected World

Derive Value Creation Process from Functions

6. The RAMI Toolbox

This section gives an overview how the RAMI Toolbox works to navigate within instantiated models created by the architecture modeling framework. Thereby, a GUI and a corresponding event handler listens to the chosen elements and diagrams and navigates to the interconnected pane.

Main GUI Window:

Create Model	Create Model Structure								
BL	FL	IL	CL	GL	AL				
8									
SN									
8									
ä									
IN									

The main windows shows all of the panes within the Matrix.

Create Model Structure:

Create Model Structure		
Choose Models to Create:		
Create CW Structure		
Create EN Structure		
Create WU Structure		
Create WS Structure		
Create CD Structure		
Create DE Structure		
Create PR Structure		
Create * Structure 8		
Select All Deselect All	Cancel	ОК

The create Model Structure allows to create the Folder Structure within an EA-Project:

Now, in the GUI, only the selected panes are shown in color:

If you click on each pane, additional Functions are offered:

AMIToolbox - Step Through								
Create Model Structure								
BL	FL	L	CL	GL	AL			
]			
Function Layer Transformation: - Refinement of the Functional Requirements into PUCs (refinement) Function Modeling: - Model Functional Elements as Black Box - Model Chain of Effects for Black Box Functional Elements (White Box Model) Function Black Box Model: - Derive Functions from FAS-Method - Direct definition of Functions - Define Inputs, Outputs, Disturbances and Interferences Function White Box Model: - Define internal functions of Black Box Functional Elements - Model Chain of Effects for internal functions								
read more ✦ Add Model ► Allocate ▼ Decompose								

Clicking on Add Model, a set of available diagrams are shown to describe the View.

🛞 Select Model Kinds	×
Available Diagrams	Diagrams to create
Requirements/Constraints Functional Standards Activity Diagram Function Grouping Function White-Box	> Functional Architecture Function Black-Box <
	Cancel Create Diagrams

They are automatically created within the Folder structure:

When opening a diagram or switching to it in the tabs, the corresponding pane is automatically selected:

7. Model-driven development with the RAMI Toolbox

This section explains the application of the RAMI Toolbox based on a practical example. This example deals with model-driven engineering of a Greenfield. However, there are multiple other scenarios available with the matrix of the toolbox. For further information, contact the authors.

7.1. Develop Business Layer

The focus of the RAMI Business Layer is to show the system as it is and find potential for optimizing current processes. Thus, first the Business Cases need to be found and the requirements have to be derived. It is suggested to use the involved High-Level Use Cases as model elements to show realizations for a Business Case. The steps below describe how to model the RAMI Business Layer for a single Business Case.

- 1. Indicate what is send into your system of interest and what is given to the customers with a SIPOC diagram.
 - Create a new Package called Business Layer
 - Create a Sub-Package called Context Analysis
 - Add a RAMI Context Diagram
 - Model the In- and Output from your System of Interest

- 2. Use a BPMN Diagram for describing the Process how the received products are converted to goods and send to the customer within the Sol.
 - Right click on your System of Interest and add a new Child Diagram -> Composite Structure Diagram
 - Add a Sub-Package called Process Model and emerging BPMN Diagram there
 - Model the Process of your Sol with this BPMN Diagram

	Papier					
M	SAP					
ormation Flo	Engenix					
Jul	E-Mail					
	Telefon Mündlich					

- Use different abstraction levels to describe Business Processes on different abstraction levels
- Then, use Kaizen Bursts for indicating possible problems or potential for optimization

- 3. In addition, single manufacturing processes can be modeled with the help of a Wertstromanalyse-Diagram, which is used for better illustrating the engineering view.
 - If you want to describe a single manufacturing process within the Business Process in detail, you can add a new Wertstromanalyse-Diagram and select it as Child Diagram

- 4. Gather all Kaizen Bursts and summarize related ones into Business Cases. A Business Case thereby explicitly needs economic assessment.
 - Create a new Sub-Package called Business Analysis
 - Add a RAMI Business Layer Diagram and move all Kaizen Bursts there
 - Consider Business Cases regarding to the identified problems

- 5. Model the Stakeholders and their interest into the whole manufacturing system as well as for the chosen Business Cases
 - Add a new RAMI Business Layer Diagram into Business Analysis called Goal Model
 - Create a Boundary for your Sol and move the Business Case in there
 - Add all Stakeholders having interest into the System or the Business Cases

6. Stakeholder needs are summarized to quantitively Requirements

- Create a new Sub-Package called Requirements Analysis
- Add a SysML Requirements Diagram
- Derive Requirements from the Stakeholder Needs or any other elaborated requirements and indicate them in this diagram
- Also use quantitative information where possible

7. On basis of the identified requirements, consider possible ways to approach the solving of the Business Case. Determine a specific solution and model it as High Level Use Case in the Business Case Diagram.

A High Level Use Case builds the base for further system development. All future aspects are based on the outcomings of this Business Analysis.

7.2. Develop Function Layer

The RAMI Function Layer deals with developing functions in order to fulfil the requirements and specify realization elements that execute the identified functions.

- 1. Model the HLUC in detail with an Activity Diagram on multiple granularity levels
 - Create a new Package called Function Layer
 - Create a Sub-Package called Use Case Refinement
 - Right click on your HLUC and add a new Activity Child Diagram
 - Model the intended Process how the HLUC should be executed
 - Use different abstraction levels and be as detailed as possible

2. Summarize Identical Actions and map them to Functional Groups

- Create a Sub-Package called Functional Grouping
- Add a new RAMI Function Layer Diagram
- Move all granular Actions or Tasks into this Diagram
- Identify similar Actions and create Functional Groups describing them in more detail

- 3. Develop Functions from Groups and model their interconnection as well as transmitted elements
 - Create a Sub-Package called Functional Layer
 - Add a new RAMI Function Layer Diagram
 - Create a Functional Element for each Functional Group
 - Add them to the Diagram and specify Ports for In- and Outputs
 - Model the Function Interrelations between the Functional Elements

4. Model each Function in detail according to Black- and White-Box perspective

- Create a new SysML Block Definition Diagram for each Functional Element and move it beyond the element in the package explorer
- Model the Function itself, interfaces and ports in more Detail by showing In- and Outputs as well as disturbances and interferences

Vorverschicthungsstärke	«Functional Element» Endverstärkungsgeschwindigkeit berechnen	Endverstärkungsgeschwindigkeit
Länge Modul		Kupferanteil 🕨 Kupfermenge 🕨

5. Trace Functions to Logical Elements

- Create a Sub-Package called Actor Mapping
- Add a new RAMI Integration Layer Diagram
- Move all Functional Groups into this Diagram
- Add physical components fulfilling the single Functions to this Diagram (n:n relationships)

7.3. Develop Information Layer

Focus of this task is to model the information object flows between the single components and to identify proper data model standards that are suitable to reflect these information objects.

- 1. Model Data exchange between Logical Components and specify Data Model Standards
 - Create a new Package called Information Layer
 - Add a new RAMI Information Layer Diagram
 - Move all logical elements into this Diagram
 - Model the information exchange and all related data in this Diagram

7.4. Develop Communication Layer

The focus of the Communication Layer is to depict the used technology and protocols for the communication between single components on basis of a Service-oriented Architecture.

- 1. Model Interfaces on which the data is exchanged.
 - Create a new Package called Communication Layer
 - Add a new RAMI Communication Layer Diagram
 - Move all logical elements into this Diagram
 - Model the communication structure and all interfaces in this Diagram

7.5. Develop Integration Layer

By developing the RAMI Integration Layer, the ICT Infrastructure and the HMI's of the Logical Elements are added to the Model.

- 1. Model ICT Network Topology and HMIs to create a digital twin of an asset.
 - Create a new Package called Integration Layer
 - Add a new RAMI Integration Layer Diagram
 - Move all logical elements into this Diagram
 - Model the dependencies and all HMI's in this Diagram

7.6. Develop Asset Layer

By developing the RAMI Asset Layer, real-world representation is added to the model.

- 1. Model physical components and their dependencies of the system.
 - Create a new Package called Asset Layer
 - Add a new SysML Block Definition Diagram
 - Create all physical elements based on logical ones into this Diagram
 - Model the dependencies in this Diagram

8. Case Studies & Applications

8.1. PIM -> PSM fully automated model transformation

1. Install the corresponding Version of the RAMI Toolbox

Make sure, the RAMI Toolbox is installed correctly and available in Enterprise Architect. The source files are located in:

C:\Program Files (x86)\RAMI Toolbox

The availability of the RAMI Toolbox Add-In can be checked in EA in the "Specialize"-Tab with the function "Manage-Addin":

Manage Add-Ins					
Available Add-Ins		Status	Load on Startup		
RAMI Toolbox		Enabled	V		
Description:					
	ОК	Cancel	Help		

On the right hand side, the RAMI Toolbox can be accessed and functions can be called:

- 😵 -	Start	Design	Layout	Develop	Publish	Simulate	Specialize	. c	onstruct	Execu	te Co	onfigure		
Search	Portals	System	Scripting	Manage-Tech	Publish-Tech	ArcGIS	<mark>ر ال</mark> ArchiMate	CDM	GML	⊡ NIEM 2.1 •	NIEM	Manage-4	addin Windows	RAMI Toolbox •
Exp	lore	Tool	s			т	echnologies						Add-Ins	

2. Place the AutomationML Library file "SiemensEnginesLib.aml" into the source folder of the RAMI Toolbox

> Dieser PC > OS (C:) > Programme (x86)	> RAMI Toolbox			`
Name ^	Änderungsdatum	Тур	Größe	
ModelKinds	01.12.2021 22:30	XML-Dokument	4 KB	
ProjectStructure	01.12.2021 22:30	XML-Dokument	2 KB	
RAMIStepThrough	01.12.2021 22:30	XML-Dokument	5 KB	
RAMIStepThroughSPES	01.12.2021 22:30	XML-Dokument	20 KB	
😼 RAMIToolbox.dll	02.12.2021 09:12	Anwendungserwe	126 KB	
🗐 RAMIToolbox.dll.config	01.12.2021 22:30	XML Configuratio	1 KB	
RAMI-Toolbox	07.07.2021 10:55	XML-Dokument	1 370 KB	
📄 Reference Data	01.12.2021 22:30	XML-Dokument	24 KB	
🔽 🛒 SiemensEnginesLib	10.02.2021 15:36	AML-Datei	13 KB	

- 3. Use the already provided "Fischertechnik" Case Study to examine an example for the development of industrial systems with the RAMI Toolbox or model your own system according to the proposed development strategy
- → Further information about this step is mentioned in Chapter 7
- 4. To use the transformation from PIM to PSM, model the Function Layer of RAMI 4.0
 - Refine Use Cases and interactions with the system by applying Activity Diagrams
 - Use the FAS methodology to group similar actions
 - Create Functional Elements to further refine the grouped actions with a Functional Architecture, Black- and White-Box models
 - Model an Actor Mapping Diagram, where the mapping of Functions to physical components is depicted

5. For each Functional Group representing the usage of an engine, add the Tagged Values "Height (mm)", "Power max (kW)" and "Speed max (rpm)"

•	1 2i 양 📝 🗙 🛛 📎	¥ 🙆				
 Block (Turntable Engine) 						
Height (mm)		300				
	Power max (kW)	550				
	Speed max (rpm)	4500				

6. According to the desired Specifications of the Engine, set the values to be strived for

Either use real values derived from technological system requirements or just put any value for testing purposes. In this scenario, the turntable engine must have a max height of 30 cm, a max power supply of 550 kW and a max speed of 4500 rpm.

7. In the Actor Mapping Model, trace any component (ideally an Actor) to the just defined Functional Group

8. With a right click on the Functional Group or with the RAMI Toolbox at the Specialize-Tab, you can execute the function "PIM -> PSM".

If everything is installed correctly, this will search in the AutomationML library for the best possible solution and automatically sets the Values of the traced component to this solution.

In this case study, the Siemens SIMOTICS DC Series 6 is the best fitting engine with a height of 280 cm, a power supply of 510 kW and a rotation speed of 4500 rpm.

9. Model the technical architecture of the system with the chosen engine

9. Acknowledges and Future Work

The financial support of the Josef Ressel Center by the Austrian Federal Ministry of Economy, Family and Youth and the Austrian National Foundation for Research, Technology and Development is gratefully acknowledged.

As the RAMI 4.0 Toolbox appears to be a very useful help for architecting Industrie 4.0based Systems continuous development is planned. The features for the next iteration will be selected according to the gained experience during application in various projects. However, a few feature requests already exist as you can find below:

- Architecture Refinements
- Element Attribute Refinements
- Model Verification & Validation
- FMEA Integration
- ...