
Application of the
Automotive Reference Architecture

Model (ARAM)

Author

DI Katharina Polanec

Josef Ressel Centre for Dependable System-of-Systems

Engineering

Salzburg University of Applied Sciences

January 2024

ARAM Documentation

Contents

1 Introduction 2

2 The Automotive Reference Architecture Model 3
2.1 The ARAM Plane . 4

2.1.1 ARAM Virtualization Levels . 4
2.1.2 ARAM Responsible Roles . 5

2.2 ARAM Interoperability Layers . 6
2.2.1 ARAM Business Layer . 6
2.2.2 ARAM Function Layer . 6
2.2.3 ARAM Information Layer . 7
2.2.4 ARAM Communication Layer . 7
2.2.5 ARAM Component Layer . 7

3 ARAM Domain-Specific Language 8

4 Proposed Development Process 16

5 Installation of the ARAM Toolbox 18
5.1 Import Reference Data . 19

Josef Ressel Centre for Dependable System-of-Systems Engineering 1

ARAM Documentation

1 Introduction

This document describes the concept behind as well as the usage of the Automotive Reference
Architecture Model (ARAM) Toolbox for developing systems in the context of the automotive
domain. The main purpose of this document is an introduction to the utilization of the ARAM
toolbox. If you are interested in further information about the underlying methods and tech-
nologies, like systems engineering, modeling, or the handling of the involved modeling tool
Enterprise Architect by Sparx Systems please consider the corresponding literature or feel free
to contact us.

Josef Ressel Centre for Dependable System-of-Systems Engineering 2

ARAM Documentation

2 The Automotive Reference Architecture Model

The development of complex automotive systems requires a structured approach so that devel-
opers can keep track of everything that is involved. Moreover, it is important to achieve a clear
separation of concerns and responsibilities. Developers, departments and companies must be
aware of their own responsibilities as well as the responsibilities of entities they have to work
with during the development of an automotive system. Not only the development approach
is important but also the communication between all involved parties. In modern automotive
systems, the number of involved participants is rather high than low. Hence, communication
does not become easier, especially when different specialties meet each other and do not neces-
sarily have the same jargon. This is where the ARAM framework (Figure 1) comes into play.

Figure 1: ARAM framework

The ARAM framework is a framework to support the initial conceptualization phase of a
complex system in the automotive domain in the context of a domain-specific systems engineer-
ing (DSSE) approach. Consequently, the purpose of ARAM is mainly to ease the communica-
tion between stakeholders from different disciplines and to provide a guideline for a structured
first draft of the system under development that can serve as a centralized basis for the sub-
sequent development. The ARAM framework can be utilized and adapted to the needs of the
respective system under development. It is suitable for developing rough concepts of an entire
vehicle—being a very large and complex system—or for drafting a small subsystem within the
vehicle. Regarding the possible involved stakeholders, ARAM can be used within one enterprise
or, however, for more extensive projects involving multiple companies. To ensure this level of
flexibility in a framework, ARAM consists of three axes, spanning a three-dimensional space.

Josef Ressel Centre for Dependable System-of-Systems Engineering 3

ARAM Documentation

The foundation of the framework is provided by the base plane, spanned between the two axes
virtualization levels and responsible roles.

2.1 The ARAM Plane

The ARAM plane, as depicted in Figure 2, provides a two-dimensional space that serves the
purpose of assigning responsibilities to involved entities as well as providing an overview of the
level of virtualization of the system under development. This plane is available on each of the
five interoperability layers (Section 2.2).

Figure 2: ARAM plane

2.1.1 ARAM Virtualization Levels

An automotive system can be comprised of mainly mechanical, physical components, rather
software-intensive components, components that enlarge the system border by communicating
with the environment, or even a combination of all these variations. The Virtualization Levels
axis of the ARAM framework provides a classification for components according to their level
of virtualization. By arranging the identified components in these sections, it is easily visi-
ble whether a system is a rather hardware-intense, software-intense, or even highly complex,
intelligent system. Table 1 provides an overview of the possible classifications.

Josef Ressel Centre for Dependable System-of-Systems Engineering 4

ARAM Documentation

Body Level The body-level section provides the lowest level of virtualization. Com-
ponents in this section do not provide any type of digital intelligence
on their own. These components are essential parts of the vehicle body.
Examples of such components would be the wheels, the rear mirrors, or
the chassis.

Actuators and
Sensors

Components located on this level of virtualization are still physical com-
ponents, but also provide some logical functionality. Actuators are com-
ponents that are relevant for the execution of car functions. Often,
actuators react to conditions that are detected by sensors. Examples of
components on this level are parking sensors, rain sensors, or actuators
executing orders from microprocessors in the vehicular system.

Deeply Embed-
ded

Deeply embedded components provide a bridge between physical and
virtual components. Essentially, they represent the ECUs responsible
for the main functionality of the vehicle, hence an essential part of the
vehicle’s brain. Examples of such components are an airbag ECU, a
brake-modulation ECU or a door-lock ECU.

Software Components assigned to the software section are rather virtual than
physical components that are mainly realized through software.

Vehicle-2-X Vehicles cannot be considered isolated systems anymore. Most vehicles
are already communicating with their surroundings or even other vehi-
cles. This trend will even expand in the near to-distant future. Compo-
nents responsible for such external communication are assigned to the
vehicle-2-X section. Examples of these components are 5G connection
modules, WiFi modules, or even emergency-call modules.

Table 1: ARAM virtualization levels

2.1.2 ARAM Responsible Roles

Since ARAM can be utilized in a very volatile context, it is important to identify all involved
parties which can be almost everything: If the framework is used in the context of one depart-
ment within a company, the involved parties could be individual people. If it is used in a greater
context, throughout the whole company, those parties could be different involved departments.
Utilizing ARAM in the most extensive context, a context including several enterprises, the
involved parties could be those companies. In whichever context the framework is used, it is
important to identify and document who is responsible for which parts of the system. This is
the purpose of the Responsible Roles axis.

As depicted in Figure 2, the responsible-roles axis only has one label, the context label.
This section is a dedicated area for components that are not the responsibility of any involved
participant. Often, the systems under development interact with components that are not part
of the system boundary or that already exist, hence are not part of the development process.
Nevertheless, these components must be included in the model to provide a holistic repre-
sentation of the system under development. The context section of the responsible-roles axis
provides a dedicated space for such external components. Hence, a clear separation can be

Josef Ressel Centre for Dependable System-of-Systems Engineering 5

ARAM Documentation

made between components and subsystems that are the responsibility of an involved party and
other components the system is just interacting with.

Apart from the context label, the axis labeling is empty. This enables the usage of ARAM
in different contexts, including different types of roles. The purpose of this axis is that the users
themselves can define which labels they need on this axis. If for instance, three departments are
working on the system, the axis could have three labels, one for each department. After the first
draft of the system has been finished and the components are assigned to the responsible roles,
each department knows at first sight which components it is responsible for. The departments
can then take this slice of the ARAM cuboid and develop the respective components whilst
also being aware of interfaces towards components from other responsibilities.

Overall, the responsible roles axis provides a clear overview of components and their respon-
sible roles as well as a distinct outline of interfaces towards other responsibilities which eases
cross-discipline communication.

2.2 ARAM Interoperability Layers

The third axis of the ARAM framework is the Interoperability Layers axis. The framework
contains five different interoperability layers providing different views of the respective system
under development. Figure 3 gives an overview of these layers whilst providing a first insight into
the ARAM domain-specific language (DSL) (Section 3). The concept of these interoperability
layers is based on the GridWise Architecture Council Interoperability Stack. This stack also
served as a basis for the development of the Smart Grid Architecture Model (SGAM) framework,
a reference architecture model for the smart-grid domain. Since the automotive and smart-
grid domains are closely related in current developments (e.g.: electric-vehicle charging), the
ARAM framework is developed in a way that it also provides interoperability with the SGAM
framework. This cross-domain interoperability will be outlined in a subsequent section of this
document. In the following, the five interoperability layers of ARAM are described in detail.

2.2.1 ARAM Business Layer

The topmost layer of the framework is the Business Layer. This layer provides a business view
of the automotive system by describing the involved business actors as well as their interest in
the system under development. Hence, this layer serves as a starting point to identify entities
that are involved in the development process of the system or who impose requirements that
must be fulfilled by the finished system. The business layer is the place to collect user stories,
business goals, and resulting high-level requirements that must be taken under consideration
while further development.

2.2.2 ARAM Function Layer

Underneath the business layer lies the Function Layer, which provides a functional view of the
system. Based on the findings from the business layer, this layer is the place to identify the
functions and services that must be covered by the system to fulfill the envisioned business
goals. This is achieved by extracting the use case functionality independently of any technical

Josef Ressel Centre for Dependable System-of-Systems Engineering 6

ARAM Documentation

solutions. Moreover, the information exchanged between functions, services, and components
is specified on this layer.

2.2.3 ARAM Information Layer

The third layer is the Information Layer describing data that is exchanged between functions,
services, or components. Data on this layer is a specialized type of information that is fur-
ther described by its underlying data models. In general, this layer provides a view of the
interoperable data exchange between entities of the system.

2.2.4 ARAM Communication Layer

The penultimate interoperability layer is the Communication Layer that gives an overview of
the used protocols and mechanisms between different components of the automotive system.
The protocols that can be modeled on this layer are based on industry standards for intra-
vehicular communication.

2.2.5 ARAM Component Layer

Lastly, the Component Layer provides an overview of a high-level physical architecture alongside
the disposition of the automotive components regarding the virtualization levels and responsible
roles. The results from this layer can afterward be distributed to the respective responsible roles
so that the automotive system can be further developed in detail.

Josef Ressel Centre for Dependable System-of-Systems Engineering 7

ARAM Documentation

3 ARAM Domain-Specific Language

The main feature of the ARAM toolbox is the DSL that is delivered with it. This DSL
comprises modeling elements and relationships that aid the developers of an automotive system
in expressing it using a model-based approach. Each interoperability layer of the framework uses
different elements and relationships to express different views on the system. In the following,
each element of the ARAM DSL is listed and explained.

Figure 3: Overview of the ARAM DSL

Josef Ressel Centre for Dependable System-of-Systems Engineering 8

ARAM Documentation

Business Layer Elements

Business Actor A business actor represents an entity ful-
filling one role and being intrinsically
linked to that role. It seeks to achieve its
business goals by participating in one or
more business use cases. A stakeholder
can hold one or more roles relevant to
the business use cases of interest and
is therefore represented by one or more
business actors.

Business Goal A business goal is a desired outcome
that a business actor seeks to achieve,
expressed in a way that is measurable
and achievable, and that contributes to
the overall success of the organization.

Business Use Case A business use case is a description of a
sequence of actions that a business ac-
tor takes to achieve a business goal, ex-
pressed in a way that is independent of
any specific system or technology.

High-Level Use
Case

A HLUC is a use case that describes a
general capability, idea or concept inde-
pendently from a specific technical real-
ization like an architectural solution.

Table 2: ARAM business layer elements

Josef Ressel Centre for Dependable System-of-Systems Engineering 9

ARAM Documentation

Business Layer Relationships

Seeks to achieve A seeks to achieve relationship is a rela-
tionship between a business actor and a
business goal. It expresses, that a busi-
ness actor has an intention and actively
attempts to accomplish the respective
business goal.

Contributes to A contributes to relationship is modeled
between a business use case and a busi-
ness goal. It expresses that the business
use case is in accordance with, and pur-
posefully facilitates the fulfillment of a
business goal.

Enables An enables relationship is modeled be-
tween a business use case and a high-
level use case. This relationship ex-
presses that a high-level use case repre-
sents the system-level realization of the
business utility prescribed by a business
use case.

Participates in A participates in relationship indicates
that a business actor is actively involved
in carrying out a business use case to
fulfill their business goal. Hence, it is a
relationship between business actors and
business use cases.

Table 3: ARAM business layer relationships

Josef Ressel Centre for Dependable System-of-Systems Engineering 10

ARAM Documentation

Function Layer Elements

Logical Component Logical components are system actors
that can be either a subsystem, a per-
son, a component or any other entity.
On this level of the framework, the com-
ponents are referred as logical because
no technical solution is known yet. Log-
ical components serve as a basis for the
logical, solution-neutral architecture of
the system.

Primary Use Case A primary use case expresses workflows
that need to be realized by the system
of interest to fulfill the envisioned func-
tionality.

Function A function is an element that leads to a
detailed description of each primary use
case. This detailed description is a child
diagram of the respective function and
can be displayed using classical behav-
ioral diagrams.

Information Object To fulfill the workflows of each primary
use case, the logical components inter-
change information. The information
object describes this information that is
exchanged between logical components.

Table 4: ARAM function layer elements

Josef Ressel Centre for Dependable System-of-Systems Engineering 11

ARAM Documentation

Function Layer Relationships

Invokes The invokes relationship is modeled
from HLUC to PUC. It indicates that
the HLUC invokes one or more PUCs
to further define and realize its purpose
from the system’s perspective.

Information Object
Flow

The information object flow is a rela-
tionship on the function layer that indi-
cates some sort of information exchange
between two logical components. To fur-
ther specify the information that is ex-
changed between the two components,
the information object flow can trans-
port information objects.

Detailed Through The detailed-through relationship is used
between a function and a primary use
case. It expresses, that a function ele-
ment refines the primary use case.

Identifies The identifies relationship is used be-
tween a function and a logical compo-
nent. During the definition of the func-
tion logical components involved in that
function are identified.

Linked To The linked-to relationship is used be-
tween a logical component and a PUC.
It expresses that for the execution of a
PUC certain logical components, which
are identified through functions, are in-
volved.

Table 5: ARAM function layer relationships

Josef Ressel Centre for Dependable System-of-Systems Engineering 12

ARAM Documentation

Information Layer Elements

Data Object A data object is a piece of data that
is exchanged between components (from
the component layer). More specifically,
it specifies the kind of information ob-
ject that is exchanged between the logi-
cal components from the function layer.

Data
Representation

The data representation element defines
how a data object is represented. This
can either be a standard or any other
data model (could also be for instance
something like a JSON representation).

Table 6: ARAM information layer elements

Information Layer Relationships

Expressed By The expressed-by relationship is mod-
eled from information object to data ob-
ject and from information object flow to
data object flow. It means, that the in-
formation object (flow) is expressed in
detail by the data object (flow).

Definition The defines relationship expresses that
logical components are defined through
primary use cases. Whilst defining the
primary use cases of a system also the
logical components which take part in
the use-case process are revealed.

Data Object Flow The data object flow is a relationship
on the information layer that indicates
some sort of data exchange between two
components from the component layer.
To further specify the data that is ex-
changed between the two components,
the data object flow can transport data
objects.

Table 7: ARAM information layer relationships

Josef Ressel Centre for Dependable System-of-Systems Engineering 13

ARAM Documentation

Communication Layer Relationships

Automotive BUS
System

This relationship can be used to model
other connection types apart from the
ones provided by the DSL on the com-
munication layer.

CAN A ”Controller Area Network” relation-
ship is typically used for the connection
of large numbers of ECUs.

LIN A ”Local Interconnected Network” re-
lationship is used for the integration of
actuators and sensors into vehicle net-
works.

MOST A ”Media Oriented System Transport”
relationship is used for the integration
of infotainment ECUs due to its special
communication mechanisms and high
data rates.

Ethernet The major advantage of ethernet rela-
tionships lies within inexpensive compo-
nents and extremely high bandwidth.

FlexRay A FlexRay relationship enables deter-
ministic time responses and redundancy.
Therefore, it is used for security-critical
applications.

Table 8: ARAM communication layer relationships

Josef Ressel Centre for Dependable System-of-Systems Engineering 14

ARAM Documentation

Component Layer Elements

Mechanical
Component

Mechanical components are elements
used to model basic components of a ve-
hicle like chassis, engine, and similar.

Software
Component

Software components are elements used
to model the main software units of the
vehicular system.

E/E Component Electric/electronic components are ele-
ments that mainly control different sys-
tems within the vehicle, like ABS, ESP
and similar.

Technical
Component

A technical component can be used to
model a type of component apart from
the ones provided by the DSL on the
component layer.

Table 9: ARAM component layer elements

Component Layer Relationships

Technical
Realization

The technical realization is a relation-
ship between logical component and
technical component, expressing that
technical component is the technical re-
alization of a logical component.

Part Of The part-of relationship can be used to
express that multiple technical compo-
nents are part of another (superordi-
nate) technical component.

Physical Connector This relationship expresses that certain
vehicular components are connected on
a physical level.

Table 10: ARAM component layer relationships

Josef Ressel Centre for Dependable System-of-Systems Engineering 15

ARAM Documentation

4 Proposed Development Process

Since this framework is designed to be adaptable depending on the automotive system, adher-
ence to a specific modeling approach is not mandatory. However, general approaches as well as
a best practice approach are suggested in the following.

Two main types of approaches can be differentiated: the greenfield and the brownfield
approach. A completely new system—meaning it is not built on top or as an extension of an
existing system—would be developed starting from the business layer all the way through to the
component layer. This approach is referred to as the greenfield approach. The more common,
however, is a brownfield approach: Some components, or even a whole subsystem, do already
exist. In this case, it is recommended to model the component layer first, meaning to model
the existing high-level architecture. Thereafter, the to-be-implemented components must be
defined and outlined. This process would again start on the business layer. Hence, a brownfield
approach combines existing and new parts. Figure 4 displays a best-practice approach for the
development of new components and subsystems using the ARAM Toolbox.

Figure 4: Best-practice development process

The process displayed in Figure 4 shows ten steps:

1. Identify business actors: Before defining the actual system, it must be clearly defined
who has an interest in the system under development. This is done in a preliminary
context analysis and definition of interested parties. After the business actors have been
identified, they are modeled on the business layer.

Josef Ressel Centre for Dependable System-of-Systems Engineering 16

ARAM Documentation

2. Identify business goals: Each business actor has a business goal regarding the system
under development. These goals are modeled on the business layer and connected to the
business actors.

3. Derive business and high-level use cases: The actual workflow of business goals, from
the perspective of a business actor, is then specified through business use cases. These
business use cases invoke high-level use cases that further describe the functionality of a
business use case.

4. Identify primary use cases based on high-level use cases: The connection between
business and function layer is established through an allocation of high-level use cases to
primary use cases. The latter describes workflows that must be executed from the system’s
perspective.

5. Refine primary use cases by means of functions: In order to express primary use
cases in detail, they are refined by functions. A function element holds a behavioral
diagram that is used for this purpose.

6. Identify logical components and information objects: During the definition of
behavioral diagrams, it can also be identified which logical components interact with
each other and which types of information they exchange. These logical components as
well as information objects are also modeled as elements and connected to the defining
primary use case on the function layer.

7. Realize logical components through technical components: After the upper two
layers have been specified, the logical components are realized through technical compo-
nents. This mapping is done on the component layer.

8. Refine information objects through data objects: After specifying the technical
components, their data exchange can be defined. This is done on the information layer
based on the already identified information objects. Hence, if logical components A and B
exchange information object I on the function layer, their technical realizations (technical
components) a and b exchange data d which is a specialized information object I.

9. Define communication protocols between components: On the communication
layer, communication protocols are specified between the technical components. Hence,
a view of protocol exchanges is modeled on this layer.

10. Establish physical connection between components: After all other layers have
been developed, it is known which technical components are interacting with each other.
These connections are finally modeled on the component layer.

This suggested best-practice approach is an iterative approach. It is always possible to
refine any of the layers and work through the framework again.

Josef Ressel Centre for Dependable System-of-Systems Engineering 17

ARAM Documentation

5 Installation of the ARAM Toolbox

The ARAMToolbox.Setup.0.0.msi file will be downloaded to the specified location. After the
download has finished, open the downloaded file. This will open the ARAM Toolbox Setup
Wizard, as depicted in Figure 5.

Figure 5: Installation wizard

Click Next and accept the license agreement, then click Next again. Specify the installation
location for the ARAM Toolbox or leave the default location (”C:\ProgramFiles(x86)\ARAM
Toolbox\”). Click Next and Install. Finally, after the installation is completed, click Finish
(Figure 6).

Figure 6: Finished installation wizard

Now, you can open Enterprise Architect. If you go to Specialize you will find the ARAM
Toolbox under Add-Ins (Figure 7).

Josef Ressel Centre for Dependable System-of-Systems Engineering 18

ARAM Documentation

Figure 7: Where to find the ARAM Toolbox in Enterprise Architect

5.1 Import Reference Data

Currently, it is still necessary to import the reference data file which contains the settings
for the ARAM plane manually. This will however be fixed in future releases. To import the
Reference-Data.xml file, go to the Configure tab of Enterprise Architect. Under Model you will
find the Tansfer option. Click on Import Reference Data... as depicted in Figure 8.

Figure 8: Import reference data

In the dialog that opens up, click on Select File and select the path to the Reference-
Data.xml file. Finally, click on Import. Now, you can use the Enterprise Architect matrix that
displays the ARAM plane.

Josef Ressel Centre for Dependable System-of-Systems Engineering 19

	Introduction
	The Automotive Reference Architecture Model
	The ARAM Plane
	ARAM Virtualization Levels
	ARAM Responsible Roles

	ARAM Interoperability Layers
	ARAM Business Layer
	ARAM Function Layer
	ARAM Information Layer
	ARAM Communication Layer
	ARAM Component Layer

	ARAM Domain-Specific Language
	Proposed Development Process
	Installation of the ARAM Toolbox
	Import Reference Data

